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Kinetic and discrete turbulence
on the surface of quantum liquids

L V Abdurakhimov, M Yu Brazhnikov,
A A Levchenko, I A Remizov, S V Filatov

1. Introduction

Wave turbulence is a nonequilibrium state in a system of
interacting nonlinear waves in which the energy pumping and
dissipation ranges are well separated in the wave number
space. A turbulent state is characterized by a directed energy
fluxP in the k-space.Wave turbulence states can be realized in
many nonlinear systems, for example, in plasmas [1],
magnetic systems in solids [2], and on the surface of seas and
oceans [3]. In our experiments, we explore the turbulence in a
system of capillary waves, where surface tension plays the
main role. Waves on a water surface are conventionally
referred to as gravity waves if their wavelength exceeds
17 mm, and as capillary waves otherwise.

The frequency o of capillary waves on the surface of a
liquid is defined by the modulus of the wave vector k together
with the surface tension coefficient s and fluid density r:

o �
�
s
r

�1=2

k 3=2 : �1�

Dispersion law (1) for capillary waves is of a decaying type,
i.e., it permits the three-wave processes of wave decay into
two waves or coalescence of two waves into a single wave

while such that the energy and momentum are conserved,

o1 � o2 � o3 ; k1 � k2 � k3 : �2�

When the surface of a liquid is excited by an external force,
a turbulent state can develop in the system of capillary waves,
in which the energy flux P in the k-space is directed from the
pumping range toward large wave numbers (high frequen-
cies), forming a direct cascade. Under the assumption that
wave interactions are weak and hence the main contribution
to energy transfer comes from three-wave processes, the
theory of (weak) wave turbulence [4] predicts a power law
for the energy distribution over frequencies, E�o� � oÿ3=2.

However, exploring the energy frequency spectrum in
experiments with capillary waves is a rather difficult task.
From the standpoint of an experimentalist, it is most
convenient to explore not the energy distribution Eo but the
pair correlation function I�t� � hZ�r; t� t� Z�r; t�i for the
deviation of the surface elevation from equilibrium at a
point r, because the deviation Z�r; t� from a planar surface is
directly measurable.

The wave turbulence theory [4] for a system of capillary
waves on the surface of a liquid predicts the formation of a
turbulent cascade in the inertial range bounded by the
pumping at low frequencies and the dissipation range at
high frequencies. Within the inertial range, the pair correla-
tion function I�t� in the Fourier representation is described by
a power-law function of the frequency (turbulent cascade):

Io � oÿm ; �3�

and E�o� � o 4=3Io. The exponent m depends on the spectral
characteristics of the driving force. Under the excitation of
the surface of the liquid by a low-frequency noise in a broad
band Do (with a bandwidth exceeding the characteristic
pumping frequency op, Do5op), the turbulent cascade Io
is described by the functionoÿm with the exponentm � 17=6.
Numerical simulations [5] provide an estimate of m that is
close to the theoretical prediction. The results of numerical
modeling in Ref. [6] indicate that as the bandwidth of noise
pumping Do is reduced, a series of equidistant peaks emerges
in the turbulent cascade, with their widths behaving as a linear
function of the frequency. For a narrow-band pumping,
Do < op, the decrease in the height of these peaks as the
frequency increases is described by a power-law function of
frequency with an exponent that exceeds the value for
broadband noise pumping by one, i.e., m � 23=6.

Our experimental studies on the surface of liquid hydro-
gen have shown that the spectral characteristic of the applied
force determines the value of the power-law exponent [7].
When the surface is perturbed by a low-frequency harmonic
force, the correlation function Io exhibits a set of narrow
peaks whose frequencies are multiples of the pumping
frequency op. The peak maxima are well described by a
power law oÿm with m � 3:7� 0:3. When, in addition to
pumping at a single resonance frequency, a harmonic force at
another resonance frequency is applied, the exponent
decreases to m � 2:8� 0:2. The exponent was also close to
m � 3� 0:3 when the surface was excited by a broadband
low-frequency noise. In these experiments, we have qualita-
tively shown that in passing from the surface excitation with
broadband noise to pumping by a harmonic force at the
single-cell resonance frequency, the exponent m increases.
Detailed results characterizing the evolution of a turbulent
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cascade under variations in the spectral characteristic of the
excitation force (in passing from broadband pumping to a
narrowband one) are obtained in Ref. [8].

In a stationary turbulent spectrum in a system of capillary
waves, the energy is transferred to the region of high
frequencies, where it is converted to heat through viscous
losses, and the turbulent cascade decays. To keep the
turbulent cascade in a stationary state, the energy has to be
permanently supplied at low frequencies. The high-frequency
boundary of the inertial range can be estimated by assuming
that at the bounding frequencyob, the time scale of nonlinear
wave interaction tnl becomes comparable in the order of
magnitude to the viscous dissipation time tn [3],

ob �
�
P 1=2

n

�6=5

�
�
Z 2
0 o

17=6
0

n

�6=5

; �4�

where Z 2
0 is the wave amplitude squared at the pumping

frequency op and n is the kinematic viscosity of the liquid.
At high frequencies, the spectrum behavior is determined

by the details of energy dissipation and nonlinear wave
interaction. When waves in the dissipation range interact
mainly with the nearest neighbors but not with waves from
the inertial range, the wave distribution at high frequencies
becomes close to exponential [9]. A detailed analysis [10] gives
a quasi-Planck spectrum for the correlation function in the
dissipation range,

Po � o s exp

�
ÿ o
od

�
; �5�

where od is the characteristic frequency of the distribution.
Results of numerical modeling for capillary waves [10]
corroborated the exponential dependence of the wave
distribution in the dissipative range. In our research, we
therefore concentrated on a detailed study of the evolution
of a turbulent cascade as the bandwidth Do was varied: from
broadband noise pumping (kinetic regime) to narrow-band
noise excitation, and further to monochromatic pumping
(discrete mode).

In bounded geometries, the continuous spectrum of
capillary waves becomes discrete, whereas the separation
between the resonance modes increases with the frequency.
In the case of monochromatic forcing of the liquid surface,
the turbulent cascade consists of harmonics whose frequen-
cies aremultiples of the pumping frequency. Simple reasoning
leads to the conclusion that for such surface excitation,
system of equations (2) does not have any solutions [11, 12].
However, as shown in Ref. [13], this limitation is lifted if
nonlinear broadening of resonance peaks is taken into
account. In that case, the conservation laws have to be
written as��jk1j3=2 � jk2j3=2 ÿ jk3j3=2�� < d ; k1 � k2 ÿ k3 � 0 ; �6�

where d is the characteristic nonlinear broadening of the
resonance peak. Additionally, it is necessary to take into
account that for a classical liquid at high frequencies, the
discrete spectrum becomes quasicontinuous because of
viscous broadening of the resonance peaks. But in liquid
hydrogen and, especially, helium, the kinematic viscosity
coefficient is less than in water, by a factor of 10 for hydrogen
and 100 for helium. Therefore, the quantization can play an
important role in the energy transfer in the cascade [14] under

monochromatic excitation. Our work [15] presents results
obtained on the surface of superfluid helium under harmonic
forcing when the discrete character of the system is essential
(discrete turbulence). At the same time, for broadband
pumping applied to surfaces of liquid hydrogen and helium,
the case of kinetic turbulence is realized, which is closest to the
model system worked out theoretically in Ref. [4].

2. Experimental procedure

In recent years, owing to advances in experimental technol-
ogy and computer methods for processing rapidly varying
signals, substantial progress has been achieved in exploring
capillary turbulence on the surface of water [16±19], ethanol
[20], silicon oil [21], and even mercury [22]. Our previous
experiments [23] have shown that using liquid helium and
hydrogen in studies of turbulence offers a number of
advantages over the use of traditional media owing to the
small density and low kinematic viscosity of helium and
hydrogen.

In our research, we used a technique [24] based on
measuring the power of a laser beam reflected from the
oscillating surface of a liquid. Measurements were conducted
in optical cells located in the vacuum cavity of a helium
cryostat. A plane horizontal capacitor was installed inside the
cells. Gaseous hydrogen or helium was condensed in a
cylindrical copper cup. Its diameter was 60 mm in experi-
ments with hydrogen and 30 mm in experiments with helium.
The cup height was varied in the range 4±6 mm. Above the
cup, the upper horizontal metallic plate of a capacitor was
mounted, leaving a gap of 3.5 mm. The liquid was accumu-
lated until it reached the edge of the cup. The temperature
during measurement was T � 15:5 K in experiments with
hydrogen and 1.7 K in experiments with helium.

The lower plate of the capacitor is fitted with a radioactive
source emitting b-electrons with the mean energy 5 keV.
Under the action of radiation, an ionized layer of liquid is
formed in the vicinity of the source. A voltage of 1000 V
applied to the capacitor plates drives positive ions out of the
ionized layer toward the surface of the liquid. In this manner,
the charged liquid surface and the upper metallic plate form a
plane capacitor.

Waves on the charged fluid surface are excited by an
alternating electric field generated by AC voltage with an
amplitude of 1±100 V applied to the metallic cup, in addition
to DC voltage. Pumping either is harmonic at frequencies
close to the resonant frequencies of the cylindrical cell or
represents broadband noise. The noise pumping signal was
synthesized through the inverse Fourier transformation given
the power spectrum and applying random phases. Using an
electric field to excite the surface of the liquid offers a number
of advantages. Indeed, it allows applying the force only to the
surface and controlling the symmetry of forcing together with
its spectral characteristics.

Changes in the power of the reflected laser beam were
measured by a Hamamatsu s3590-08 semiconductor receiver.
The AC output of the photoreceiver P�t�, proportional to the
power of the reflected ray, was stored in computer memory at
a sampling rate up to 100 kHz with the help of a fast 24-bit
analog-to-digital converter (ADC). The recording time of the
signal P�t�was varied from 3 s to 100 s. The dependences P�t�
were processed with a fast Fourier transform (FFT) routine.
As a result, we obtained the distribution of the squared
amplitude of the harmonics over frequency P 2

o, which for a
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broad beam, as shown in Ref. [24], is proportional to the pair
correlation function for the surface deviation from equili-
brium, Io � P 2

o.

3. Modification of a turbulent cascade
with a reduction in the forcing bandwidth

Figure 1a shows part of the signal P�t� recorded from the
surface of liquid hydrogen excited by noise. The bandwidth of
the electric signal V�t� applied to the guard ring was 64 Hz
(from 39 Hz to 103 Hz), i.e., the surface was excited by
broadband noise. The maximum amplitude of the noise
forcing signal was 10 V, while maximum steepness of waves
(angular amplitude) did not exceed 0.03 in the pumping
range.

Figure 1b shows the distribution P 2
o (the dark curve) that

corresponds to the signal in Fig. 1a. In the frequency range
from 200 Hz to 8 kHz, a turbulent cascade formed whose
frequency dependence was described by a power law with the
exponent m � 2:8� 0:1. For comparison, the straight line
shows a function proportional to oÿ17=6. The deviation from
the power law at high frequencies (4±8 kHz) is amanifestation
of the impact of viscous losses in the liquid on the turbulent
distribution [4]. The dissipation range becomes well pro-
nounced as the excitation force amplitude decreases. The
light curve in Fig. 1b corresponds to the spectrum P 2

o with
pumping in the same frequency range, but with the amplitude
two and half times smaller. The high-frequency boundary of
the inertial range decreased to 2.5 kHz. In the frequency range
above 2.5 kHz, a sharp reduction in the oscillation amplitude
is observed, which is characteristic of the spectrum in the
dissipation range.

When the bandwidth of noise pumping was reduced
relative to the mean pumping frequency such that
Do � o=2, several peaks emerged on the turbulent cascade.
The distribution P 2

o for noise pumping in the frequency range
57±89 Hz is shown in Fig. 2a. The angular wave amplitude
was 0.03, the same as in the previous case. The first peak lies in
the pumping range. The second and third peaks correspond to
waves appearing as a result of a nonlinear interaction. The
separation between the centers of the peaks is approximately
equal to the pumping frequencyop � 73 Hz. It is clearly seen
that a well-developed turbulent cascade formed in the
frequency range 250 Hz±6 kHz. At frequencies above the
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Figure 1. (a) Part of the experimental record of P�t�. Pumping is carried

out with a random force in the frequency range 39±103 Hz. (b) Turbulent

cascade on the surface of liquid hydrogen excited by a random force in the
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Figure 2. (a) The spectrum P 2
o of surface oscillations forced by noise in the

frequency range 57±89 Hz. (b) The same as (a), but in the frequency range

71±75 Hz. The straight line corresponds to the dependenceoÿ23=6. (c) The
dependence of the peakwidthDf in the spectrum of panel (a) on frequency.

The straight line is the linear law 0:027o.
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upper boundary of the inertial range ob � 6 kHz, the decay
of the cascade is observed, caused by viscous losses.

As the pumping bandwidth Do is reduced further, the
peaks in the turbulent cascade become more expressed, and
the minima go deeper. Figure 2b shows the distribution P 2

o
when the surface is excited by noise in the frequency band of
4 Hz (from 71 Hz to 75 Hz). About 30 peaks are distinctly
visible in the turbulent cascade. The separations between the
peaks stays the same (73 Hz). The inertial range extends from
200Hz to 15 kHz. The frequency dependence of peakmaxima
within the inertial range is close to the power law oÿ3:8�0:1.
We note that the difference in exponents in cases of narrow-
and broadband pumping is 1:0� 0:2.

The peak widths Df increase with frequency. The experi-
mental dependence of peak widths on frequency is presented
in Fig. 2c for noise pumping in the frequency range 71±75 Hz.
Obviously, the increase in Df with frequency is described by a
linear function, and satisfactory agreement is observed
between experimental data and the linear dependence pre-
dicted by the theory. The solid line in Fig. 2c corresponds to
the linear function Df � 0:027o. This means that the effective
width of the pumping range in the capillary wave system is
about 2 Hz, while the noise bandwidth in the electric signal
applied to the guard ring is 4 Hz. This discrepancy comes
from the discreteness of the capillary wave spectrum in the
experimental cell and the finite width of resonance modes.
The separation between two neighboring resonances at
frequencies about 100 Hz amounts to � 10 Hz for the peak
width about 1 Hz. Thus, for a surface forced with noise in the
frequency band of 4 Hz, there is such a position of the
pumping interval relative to the resonance frequencies of the
cell that only a single resonance harmonic can be excited.
Arguably, this happens in the case displayed in Fig. 2b.

The linear dependence of the peak width on frequency can
readily be explained [6]. Indeed, if nonlinear waves are excited
in the range op � Do, then, by virtue of the nonlinear
interaction between them, waves appear in the frequency
range 2op � 2Do, and so on. Hence, the linear dependence of
the peak width on frequency must pass through the
coordinate origin. Precisely these considerations have been
used to draw the solid line in Fig. 2c.

The experimental results presented above showed that the
change in the spectral characteristics of noise forcing (the
bandwidth) leads to a qualitative modification of the
turbulent cascade in the system of capillary waves on the
surface of liquid hydrogen. For broadband pumping, the
turbulent distribution is described well by a monotonically
decaying power-law function with the exponent close to
m � 2:8� 0:1. By contrast, for narrowband forcing, a set of
peaks appears in the turbulent cascade, their maxima
following the power law with the exponent m � 3:8� 0:1.
Our results turn out to be in very good agreement with theory.

4. The decay of the turbulent cascade
in the dissipation range

Inthesamefashionas intheexperimentsdescribed inSection3,
capillary waves on the surface of liquid hydrogen were excited
by a random force in the range 39±103 Hz. The mean
amplitude of AC voltage (pumping) Vp, averaged over the
frequency range, was varied from zero (in the absence of
pumping) to the maximum amplitude Vp � 30 V, which was
limited by the maximum angular wave amplitude allowed by
the geometry of our low-temperature optical system.

Figure 3a shows the Fourier spectrum of the power of a
reflected laser beam for various excitation amplitudes. The
pumping range can well be discerned on the low-frequency
side. It is followed by the inertial range within which the
spectrum P 2

o can be described by power law (3). The width of
the inertial range, as is clearly seen, depends on the pumping
amplitude. When the surface is excited with a force that
corresponds to the amplitude Vp � 4 V, the dissipative
range begins immediately after the pumping range, while the
inertial range is absent. The increase in the amplitude of the
driving force expands the inertial range, and its high-
frequency boundary ob shifts toward higher frequencies.
The widest inertial range, from 0.3 to 4 kHz, is observed for
the maximal pumping amplitude Vp � 30 V. At frequencies
above the inertial range boundary, surface perturbations
decay because of viscous losses, and the cascade smoothly
fades out, disappearing in instrumental noise. The turbulent
cascades recast in linear coordinates (Fig. 3b) show that the
decay in the wave amplitude in the dissipative range can be
approximated rather well by the exponential dependence
P 2
o � exp �ÿo=od�. In the fitting, it is assumed that o4od,

i.e., that the characteristic frequency (viscous boundary)od is
much lower than the frequency of waves from the dissipation
range. For example, the spectrum obtained for pumping with
the amplitude Vp � 26 V is approximated by the exponential
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Figure 3. (a) The spectrum of surface oscillations P 2
o excited by a random

force in the frequency range 39±103 Hz with different pumping ampli-

tudes. The pumping amplitude is varied from 4 V (light curve) to 30 V
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range for maximum pumping. (b) The spectra P 2
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function � exp �ÿo=od� with od � 0:2, 0.4, and 0.6 kHz for Vp � 8, 16,

and 26 V, respectively.

August 2012 Conferences and symposia 821



with od � 0:6 kHz in the frequency range 5±9 kHz. Unfortu-
nately, the fitting interval turns out to be insufficiently broad
for reliably estimating the power of the pre-exponential factor
in quasi-Planck distribution (5). The values of od thus found
are several times smaller than the visible boundaries separat-
ing the inertial range and dissipation range (Fig. 3b). This
discrepancy can be explained by some arbitrariness in the
definition of the high-frequency inertial range boundary, and
hence the value ofob is only known by an order ofmagnitude.
The characteristic frequency od obtained by fitting an
exponential to the spectra grows with the pumping ampli-
tude in the dissipation range. To correctly plot the depen-
dence of od on the pumping amplitude, we used the surface
response Z0 � P at the frequency 53 Hz as a measure of the
excitation level. The quantity Z0 is directly proportional to the
mean wave amplitude at this frequency. Figure 4 shows the
dependence of od on the amplitude Z0. The experimental
dependence is described by the power law od�Z0��Z n

0 with
the exponent n� 0:85�0:05.

It is noteworthy that the approximation of experimental
spectra with quasi-Planck distribution with a small value of
the exponent s (no higher than 2) does not significantly affect
the value of od (by less than 20%), nor does it influence the
power-law exponent n in the amplitude dependence of the
characteristic frequency od�Z0�.

The obtained value of the exponent n � 0:85 differs
substantially from the value 12/5 expected from Eqn (4),
which is surprising because for a turbulent cascade formed by
a harmonic force, themeasured amplitude dependence proves
to be in good agreement with the theoretical estimate
od�Z� � Z 1:3.

We note especially that the turbulent cascade in the
dissipation range decays noticeably faster for monochro-
matic than for broadband pumping. Figure 5a shows the
turbulent cascade at the surface of superfluid helium forced
monochromatically at a frequency of 79.7 Hz. The turbulent
cascade very closely resembles distributions observed pre-
viously in experiments on the surface of liquid hydrogen [7]
and in our first studies on the superfluid helium surface [25].
The spectrum consist of equidistant harmonics: the first
harmonic corresponds to pumping, while the others are
generated as a result of the nonlinear interaction of waves
with frequencies that are multiples of the pumping frequency.
At frequencies greater than 4 kHz, the cascade decays
extremely rapidly because of viscous losses and disappears,
being buried in instrumental noise. The value of 4 kHz can be
treated as the high-frequency boundary ob of the inertial
range. The decay is described by an exponential dependence
with the characteristic frequency od � 170 Hz close to the

pumping frequency op [26]. We mention that for broadband
forcing of the superfluid helium surface, the turbulent
distribution in the dissipation range smoothly decays follow-
ing an exponential law with the characteristic frequency ob

that is close to the frequency of the high-frequency edge of the
inertial range (Fig. 6b).

We can assume that the condition of locality for waves
from the dissipation range is violated under harmonic
excitation. For these waves, the interaction with waves from
the inertial range proves to be dominating. Indeed, the
nonlinear interaction time for three-wave processes with
strongly different wave vectors (k1 5 k2, k2 � k3) satisfies
the relationship tnon � kÿ1=2 [10], whereas for the local
interaction �k1 � k2 � k3� the time tloc � k 1=4 [27]. Thus,
the waves from the dissipation interval most efficiently
interact with low-frequency waves from the inertial range,
concentrated in the vicinity of the pumping range.

5. Discrete turbulence

In experimental studies of turbulent distributions on the
surface of superfluid helium, we used two types of driving
forces to generate surface waves. In experiments of the first
type, the surface was excited by a sinusoidal force at one of the
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cell resonance frequencies. In experiments of the second type,
the surface was excited by noise in a bounded frequency
range.

Figure 5a displays the spectrum P 2
o of capillary waves

obtained in an experiment in which the superfluid helium
surface was forced by an AC voltage at the frequency 79.7 Hz
and amplitude 11 V. In the inertial range, the amplitudes of
the harmonics decay with frequency according to the power
law P 2

o � oÿm with m � 3:7, in agreement with the theore-
tical prediction for narrowband forcing [6].

If the forcing amplitude is slightly reduced, to 10 V, the
shape of the turbulent cascade experiences qualitative
changes. The high-frequency boundary of the inertial range
shifts toward low frequencies, in agreement with the results of
our previous experiments [7]. However, a new phenomenon is
observed: the formation of a distinct local maximum close to
the high-frequency boundaryob of the inertial range (marked
by the dashed line in Fig. 5b). As the pumping amplitude is
reduced further, the local maximum shifts to low frequencies.
The spectrum consist of several harmonics for minimum
pumping, and the local maximum is not observed.

We summarize common features of the results obtained in
experiments. First, a local maximum is formed at high
frequencies close to the end of the inertial range. Second, the

shape and position of the maximum depend on the pumping
frequencyop and the pumping wave amplitude. For example,
Fig. 6a shows the spectrum P 2

o obtained for the surface of
helium forced sinusoidally at a frequency of 34 Hz, with a
well-pronounced maximum in the dissipation range, and not
in the inertial range as in Fig. 5b.

When the surface is forced by noise, the local maximum is
not observed. As an illustration, Fig. 6b presents a turbulent
distribution for a helium surface forced with noise in the
frequency range 60±130 Hz. The pumping amplitude was
selected such that the end of the inertial range was located at
the same frequencies as in Fig. 5b. It can be seen that this
spectrum is qualitatively different from spectra obtained with
monochromatic pumping: it is smooth and continuous.

The formation of a local maximum can be interpreted as
energy accumulation in a narrow frequency interval near the
end of the inertial range where the transition from nonlinear
energy transfer to viscous decay occurs. A possible reason for
this accumulation can be a bottleneck that impedes energy
transfer to the dissipation range. It was shown in [10] that an
insufficient rate of energy dissipation through viscous losses
can in principle essentially modify the cascade shape at high
frequencies in the inertial range. However, judging by the
frequency and amplitude dependences of the maximum
position, the formation of the cascade is not related to the
trivial influence of viscosity. On the other hand, we are
dealing with a weakly interacting nonlinear discrete wave
system, and, as shown in Refs [11, 12], we can expect the
discreteness of the system to affect wave interactions. In the
later study [13], a model of frozen turbulence was proposed,
and it was shown that the discreteness can result in an
oscillating turbulent spectrum for surface waves in a square
geometry, when the wave number space is two-dimensional.
In our experiment, the geometry is circular, surface oscilla-
tions are described by the Bessel functions, and the wave
number space is one-dimensional. Because the cell shape and
size define the density of resonance modes, we made some
estimates in order to understand the influence of the discrete
character of spectra on the turbulent cascade in our experi-
ments. We suppose that the main reason for the bottleneck
and, consequently, the maximum formation is a detuning
between frequencies of two discrete spectra, namely the
spectrum of surface oscillations in a finite-size cell and the
spectrum of turbulent cascade harmonics. If the surface is
excited by a harmonic force, the frequency of the first peak
in the turbulent cascade coincides with the frequency
of resonance harmonics op, which satisfies dispersion
relation (1).

For surface waves in a cylindrical cell of diameter D, the
resonance values of wave vectors satisfy the equation
J1�kD=2� � 0, where J1�x� is the Bessel function of the first
order. For large magnitudes of wave vector k, the resonances
becomes equidistant with the stepDk � 2p=D. Consequently,
the distance between two nearest resonances in the frequency
space increases with frequency:

Do � do
dk

Dk � 2p
do
dk

1

D
� 3p

D

�
s
r

�1=3

o 1=3 : �7�

In other words, resonances in the case of capillary waves are
not equidistant, in contrast to frequencies of harmonics in the
turbulent cascade, which are multiples of the pumping
frequency op.

Obviously, frequency detuning can be essential only when
the resonance broadening do is small compared to the
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Figure 6. (a) Turbulent spectrum for pumping at the frequency

o=2p � 34 Hz. The local maximum in the dissipation range is zoomed in

in the inset. (b) The turbulent cascade of capillary waves pumped with

noise in the frequency range 60±130 Hz.
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separation between resonances Do (Fig. 7),

do
Do

< 1 : �8�

The resonance broadening do can be represented as a sum of
viscous don and nonlinear donl broadening:

do � don � donl : �9�

Broadening of the resonance peak caused by viscous losses
increases with the frequency,

don � 4nk 2
o � 4n

�
r
s

�2=3

o 4=3 ; �10�

while the characteristic time of viscous damping decreases,
don�tÿ1n .

Broadening due to the nonlinear energy transfer in the
turbulent cascade can be estimated from the characteristic
time of nonlinear interaction tnl as donl � tÿ1nl . In the case of
harmonic pumping, we assume that tnl � o 1=6 [7], whence
donl � oÿ1=6. As the driving force amplitude A increases, the
nonlinearity of waves increases, if the frequency is kept fixed.
We can therefore write

donl � e�A�oÿ1=6; �11�

where e�A� is an increasing function of the wave amplitude A
at the pumping frequency. Substituting Eqns (7) and (9)±(11)
in Eqn (8), we obtain the condition for the detuning to be
important:

4n�r=s�2=3o 4=3 � e�A�oÿ1=6
�3p=D��s=r�1=3o 1=3

< 1 :

On the high-frequency boundary ob of the inertial range,
the nonlinear energy transfer along the spectrum gives way to
viscous dissipation. Therefore, as noted above, it is assumed
that at the frequency ob, the characteristic time of viscous
damping is close to that of nonlinear interaction, tn�ob� �
tnl�ob�. Although the precise form of the function e�A� is
unknown, we can conclude that the resonance peak broad-
enings induced by the nonlinear interaction and by viscous
losses are also close to each other at the frequency ob,
don�ob� � donl�ob�.

It follows from estimates that in our experiments, the total
relative broadening of the resonance peak satisfies condition
(8) in a finite frequency interval located near the high-
frequency boundary ob (see Fig. 7). In this interval, the
frequency detuning between harmonics in the turbulent
cascade and resonance peaks becomes essential, and the
discrete regime of capillary turbulence is realized. Following
the logic of Ref. [10], we suppose that the energy flux
bottleneck forms in that region, which determines the
specific shape of the distribution P 2

o. At high pumping
amplitudes (or at high frequencies), the relative broadening
exceeds unity, the system becomes quasicontinuous, and the
kinetic regime of turbulence is realized. However, based on
this simple assumption, we cannot compute the exact position
of the local maximum or its form. Rigorous theoretical
analysis and numerical simulations are needed.

The proposed model presumes that the following condi-
tions, needed for the energy to accumulate in a system of
capillary waves, are satisfied: insignificant viscous broad-
ening of the resonance peak, not very strong nonlinear
broadening (moderate pumping amplitudes), and large
separation between neighboring resonance frequencies (a
relatively small cell size). We stress that it is the use of
superfluid helium with extremely low viscosity [28] that
enabled us to observe the energy condensation in the
turbulent cascade.

6. Conclusions

Passing from broadband to narrowband and further to
harmonic pumping in experiments on the formation of a
turbulent state in a system of capillary waves leads to a
qualitative change in the turbulent distribution: a set of
peaks evolves in the cascade modifying the frequency
dependence of the correlation function. A quasi-Planck
distribution of waves over frequency is formed in the
dissipation range with the characteristic frequency defined
by spectral characteristics of pumping.

Using superfluid helium with an extremely low value of
kinematic viscosity enabled observing the discrete regime of
capillary turbulence. The influence of the discreteness of the
surface oscillation spectrum on the turbulent distribution is
manifested in the formation of a local maximum near the end
of the inertial rangeÐ the energy condensation in a narrow
frequency range. The fundamental cause of this phenomenon
is the frequency detuning between the harmonics in the
turbulent cascade and resonance modes of the cylindrical
resonator, and also in the formation of a bottleneck for the
energy flux toward higher frequencies.

The authors are grateful to L P Mezhov-Deglin,
E A Kuznetsov, and G V Kolmakov for the useful discus-
sions. The research was supported in part by the RFBR grant
11-02-12147.
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Motion of the Sun through
the interstellar medium

V G Kurt, E N Mironova

1. Introduction

The motion of the Sun includes many components with
different velocities, directions, and reference systems. For
example, the Sun moves in a complicated open trajectory
around the solar system barycenter. Themaximum amplitude
of this motion sometimes exceeds the radius of the Sun itself.
This excursion is due to the motion of the most massive
planets in the Solar System, Jupiter and Saturn, with the
respective orbital periods 11.859 and 29.428 years. The Sun
also moves relative to the 100 nearest stars in the direction

toward the Hercules constellation with a velocity of
19.2 km sÿ1. This motion was discovered by W Herschel
(1738±1822) at the end of the 18th century based on the
analysis of proper motions of the brightest (and correspond-
ingly closest) stars. Naturally, Herschel could not express the
value of this velocity in units such as km sÿ1 because he did
not know the distance to these stars. Distances to stars were
measured only in the early 1830s almost simultaneously by
V Ya Struve (1793±1864) (Russia), F Bessel (1784±1846)
(Prussia), and T Henderson (1798±1844) (England) using
annual parallaxes of stars, which amount to only fractions
of an arc second, even for the nearest stars. The direction to
the apex of this motion is a � 270� and d � 30�.

The Sun also participates in an almost circular orbital
motionaround the galactic centerwith avelocity of 220kmsÿ1

in the direction perpendicular to the direction to the galactic
center. With the distance 7.9 kpc to the galactic center, the
orbital period of this motion is about 200 mln years, and
during its life (5 billion years), the Sun has already made
about 25 revolutions around the galactic center.

The Sun, together with the Galaxy, also has a peculiar
velocity relative to nearby galaxies of the Local Group of
galaxies. For example, the Galaxy approaches the center of
the Andromeda nebula (M31) with a velocity of 290 km sÿ1

relative to the Solar System barycenter.
Finally, the Sun, together with the Milky Way and the

Local Group, moves relative to the isotropic 3 K cosmic
microwave background with the velocity (667� 22) km sÿ1 in
the direction l � 276� � 3� and b � 30� � 3� (galactic coordi-
nates). In a certain sense, this reference frame is a peculiar,
singular coordinate system. Just this motion is responsible for
the presence of the dipole component in the decomposition of
cosmic microwave background in spherical functions. The
amplitude of the dipole component is 6.706 mK.

This paper is focused on the study of themotion of the Sun
relative to the local interstellar medium (LISM) on scales
smaller than one or several parsecs but larger than 1000
astronomical units (a.u.).

2. Brief history of the discovery of the motion of
the Sun relative to the local interstellar medium

In 1959, a group of astronomers from the Naval Research
Laboratory (NRL) in the USA headed by G Fridman
discovered a bright UV glowing of the sky from the rocket
Aeroby-w, which was capable of reaching only a 140 km
altitude. The glow was measured in the atomic hydrogen line
La (l � 1215:7 A

�
) with the intensity reaching 20 kR

(1 Rayleigh (R)=106 photons cmÿ2 sÿ1 (4p sr)ÿ1). The
minimum of this glow was found to come from the anti-
solar direction, and its intensity at a distance exceeding 90 km
from Earth slowly decreased with increasing height [1]. In the
same year, using a cell filled with molecular hydrogen
supplied with a filament for its dissociation, which provided
a sufficient amount of neutral hydrogen atoms for La line
absorption, Morton determined that 7% of the discovered
UV emission has a temperature exceeding 7000 K [2]. This
could be explained by the presence of both a hot atomic
hydrogen component in the upper atmosphere of Earth and
an extra-atmosphere `hot' emission component.

At almost the same time, starting in 1961, a research
program of the Moon, Venus, and Mars explorations using
automatic interplanetary stations (AISs) started in this
country.
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